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LETTER TO THE EDITOR

A double Yukawa potential for the van der Waals
interaction of C60 molecules: application to a
determination of the critical temperature

Hervé Gúerin
Ecole Suṕerieure de Chimie Physique Electronique de Lyon, Bâtiment 308, 43 Boulevard du 11
Novembre 1918, BP 2077, 69616 Villeurbanne Cédex, France

Received 15 May 1998

Abstract. A double Yukawa (DY) potential, fitted on the carbon–carbon (CC) van der Waals
(vdW) Lennard-Jones 12,6 (LJ) potential and integrated on two facing spheres, yields another
DY function, whose parameters are simply related to those of the original CC LJ. We exploit
this fact to obtain a new analytic expression of the DY type that describes the high-temperature
physical interactions between C60 molecules in good agreement with the well-known Girifalco
potential, which was obtained from the direct spherical integration of the LJ potential. The
main advantage of having a DY pair potential comes from the fact that analytic expressions
of thermodynamic functions can be obtained within the Percus–Yevick approximation of the
Ornstein–Zernike equation. As an example, an analytic expression of the Helmholz free energy
is derived, and the double tangent construction on its vdW loop allows the determination of the
liquid–vapour coexistence line and an estimation of the C60 critical parameters (Tc = 1940 K,
ρc = 0.50 nm−3). This is in good agreement with the results predicted from various other
theories with the Girifalco potential.

At high temperatures, the van der Waals (vdW) intermolecular interactions between two
C60 molecules have so far been well described by the Girifalco potential (Girifalco 1992),
which was constructed by spherical integrations of the carbon–carbon (CC) vdW Lennard-
Jones 12,6 (LJ) potential function. It has since been extensively used to study the physical
properties of C60 solid (Girifalco 1992), the structure of C60 clusters, (C60)N (Reyet al 1994,
Doye and Wales 1996), as well as the C60 high-temperature phase diagram (Shchelkatcheva
1996, Caccamo 1996 and references therein). Recently, other analytic representations
of the C60 vdW interactions with more than two parameters were also proposed based
on the spherical integrations of the three-parameter vdW Buckingham (or exp(6)) CC
potential (Gúerin 1998). Although analytic, all these potential functions have rather complex
structures that preclude the derivation of thermodynamic functions of the dense fluid in
analytic form.

The aim of this letter is to propose a new high-temperature potential interaction function
for C60 molecules of the double Yukawa DY type. This is of particular interest when
calculating thermodynamic functions, since the analytic solution of the Yukawa closure
of the Ornstein–Zernike (OZ) equation has been intensively studied (Herreraet al 1996,
Caccamo 1996 and references therein). In order to build up such a potential, we shall use
the fact that the CC vdW LJ potential can be closely approximated by a DY function (Foiles
and Ashcroft 1981, Konior and Jedrzejek 1988, Rudisill and Cummings 1989, Kalyuzhnyi
and Cummings 1996, Tanget al 1997), which after two spherical integrations yields, as
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we shall show below, another DY function, the parameters of which are simply related to
those of the CC LJ potential. Starting from the values used by Girifalco (1992) for the CC
interaction parameters, it is possible to obtain a C60 DY potential that fits closely the C60

Girifalco potential.
As a simple application of this new DY function, we obtain the Helmholz free energy

of the C60 dense fluid in analytical form following a method recently proposed for colloidal
fluids (Tejeroet al 1994, 1995). Below the critical temperatureTc, this expression develops
a vdW loop, which allows the construction of the liquid–vapour part of the phase diagram.

Let us consider two exohedral spherical uniform distributions of carbon atoms with radii
R1 andR2 (R1 < R2), the centres of which are separated byr (r > R1 + R2), containing
respectivelyN1 andN2 carbon atoms. An atomi on one shell interacts with an atomj on
the other shell at a distancedij through an LJ potential written as

V LJij = A12/d
12
ij − A6/d

6
ij = 4ε

[(
σ/dij

)12− (σ/dij )6
]

(1)

where the parameters A12, A6, ε and σ , as determined by Girifalco (1992), are given in
table 1. Due to its mathematical simplicity in solving the OZ equation, the DY potential

V DYij =
E

dij

{
exp

[−z2
(
dij − σ

)]− exp
[−z1

(
dij − σ

)]}
= E

dij

∑
k=1,2

(−1)k exp
[−zk(dij − σ )] (2)

has been proposed to represent the LJ potential with various relations between the DY and
LJ parameters. For our purpose, which is to reproduce the Girifalco potential as closely as
possible, we found that the fit chosen by Foiles and Ashcroft (1981) is the most effective.
The DY parameters are then given by

E = 2.0199εσ z1 = 2.6793/σ z2 = 14.735/σ. (3)

Table 1. Values of the CC vdW LJ potential parameters used by Girifalco (1992).

A12 (erg cm12) A6 (erg cm6) ε (erg) σ (Å)

55.77× 10−105 32.00× 10−60 4.5903× 10−15 3.4690

Now, the total interaction potential between the two shells is obtained as a sum of pairwise
interactions: VN1N2 =

∑N1,N2
i,j V DYij (dij ). In the surface continuum approximation, the

discrete summations overi and j are replaced by the integrations over the two spherical
surfaces of the Yukawa functions:(1/dij ) exp[−zk(dij−σ)]. Replacing first the summation
over j by the integration over the sphere of radiusR2, we obtain the interaction energy of
a spherical fullerene of radiusR2 with an atomi (here a C atom) at a distanceli2 from its
centre as another combination of Yukawa functions written as:

Vi,N2
(
li2
) = N2E

li2

∑
k=1,2

(−1)k
(

sinh(zkR2)

zkR2

)
exp

[−zk(li2− σ )]. (4)

Carrying out next the second integration over the sphere of radiusR1, which replaces the
discrete sum overi, we obtain the total interaction energy between two spherical fullerenes
in exohedral position as yet another DY function written as:

VN1,N2(r) = N1N2E

r

∑
k=1,2

(−1)k
(

sinh(zkR1)

zkR1

)(
sinh(zkR2)

zkR2

)
exp

[−zk(r − σ)]. (5)
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For the special caseN1 = N2 = N = 60 andR1 = R2 = R = 3.55 Å, we obtain a DY
representation of the Girifalco potential. In equation (5), the exponential coefficients are
different andσ represents the zero of the CC LJ potential. In order to transform the DY
function (5) into the more usual form in which the coefficients of the two exponentials are
equal, we introduce the parameters6 and1 such thatVN,N(6) = 0 and1 = 6 − σ , and
equation (5) becomes:

VN,N(r) = N2E

r

∑
k=1,2

(−1)k
(

sinh(zkR)

zkR

)2

exp(−zk1) exp
[−zk(r −6)]. (6)

The introduction of the dimensionless quantitiesx = r/6, a = z26 = 14.7356/σ ,
b = z16 = 2.67936/σ and

c = N2E

6D

(
sinh(zkR)

zkR

)2

exp
(−zk1) k = 1 or 2 (7)

whereD represents the minimum ofVN,N(r), allows the DY potential (6) to be set into the
form used by Tejeroet al (1995) for colloidal fluids, which reads:VN,N(r) = Dφ(x) with

φ(x) = c

x

[
e−a(x−1) − e−b(x−1)

]
. (8)

The numerical values ofD, 6, a, b and c obtained from the CC LJ potential used by
Girifalco (1992) are shown in table 2, and a comparison of the Girifalco and DY potentials
is made in figure 1. Tejeroet al (1994, 1995) have also characterized the shape of the
DY potentials (8) by three parameters:x0, x1 andδ = (x1 − x0)/x0, wherex0 is such that
φ(x) is minimum, andx1 is the value ofx for which φ(x) has dropped to 1% of its value,
i.e. φ(x1) = −0.01. The numerical values of these parameters characterizing the C60 DY
potential are also given in table 2. The valuex1 = 1.6397 is of particular interest, since it
is slightly above the threshold (x1 = 1.6) for the disappearance of the liquid phase found
by Tejeroet al (1994, 1995) in their study of phase diagrams of colloidal fluids. This is in
complete agreement with previous works on the C60 phase diagram (Hasegawa and Ohno
1996, 1997, Caccamo 1996 and references therein), where it has been shown that liquid
C60 can either exist in a very narrow range of temperature or not at all. The DY potential
presented here clearly shows then that the C60 system represents a borderline transition case
between two types of phase diagram in which the liquid phase is about to disappear or has
just disappeared.

Table 2. Values of the DY and Girifalco (G) C60 potential parameters.

D (erg) 6 (Å) rmin (Å)

G 44.430× 10−14 9.5929 10.056
DY 45.250× 10−14 9.5904 10.053

a b c x0 x1 δ

DY 40.7360 7.4071 1.8738 1.0482 1.6397 0.5643

As an example of the utility of the above C60 DY potential, we derive in this section
an analytic expression for the free energy,f , per molecule. Following the method of
Tejeroet al (1994, 1995) for colloidal fluids, the free energy is obtained from a variational
procedure based on the Gibbs–Bogoliubov inequality (Hansen and McDonald 1986) in
which the reference system consists of hard spheres (HS), the diameter (6HS) of which is
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Figure 1. Comparison of the DY (dashed line) and Girifalco (full line) C60 potentials.

taken as the variational parameter. In this context, the particular utility of the DY form of
the potential follows from the fact that∫

gHS(r)
exp(−zkr)

r
dr = 4π

∫
rgHS(r) exp

(−zkr) dr (9)

where gHS(r) is the HS pair-correlation function. Equation (9) implies that the computation
of f involves the Laplace transform ofrgHS(r) which, along with the HS free energy, can
be obtained in analytic form within the Percus–Yevick approximation of the OZ equation
(Wertheim 1963). This approach yields the following expression for the variational free
energyfV of C60 (Tejeroet al 1995)

βfV (η, t, λ) = ln η − 3
2 ln t + C − 1+ f ∗ex

(
ηλ3

)
+12cηλ3t−1

[
aeaH

(
aλ, ηλ3

)− bebH
(
bλ, ηλ3

)]
(10)

with

f ∗ex(x) =
3x(2− x)
2(1− x)2 − ln (1− x) (11)

H(z, x) = L(z, x)

12xL(z, x)+ S(z, x)ez (12)

L(z, x) = (1+ x/2)z+ 1+ 2x (13)

S(z, x) = (1− x)2z3+ 6x(1− x)z2+ 18x2z− 12x(1+ 2x) (14)

C = ln
(

633
0/π6

3
)

30 = h/
√

2πmD (15)
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where the symbols have the following meanings:β = 1/kBT ; η = πρ63/6 is the packing
fraction, ρ = N/V is the number density;t = kBT /D; λ is the variational parameter
such thatλ = 6HS/6 and ηHS = ηλ3; f ∗ex is the HS excess free energy;m is the mass
of the C60 molecule;x and z here are dummy variables; and the numerical valuesa, b,
c, 6 andD which define the C60 DY potential are given in table 2. The free energy is
given byf (η, t) = fV (η, t, λmin), whereλmin is the value ofλ for which fV is minimum.
The expressions (10)–(15) can now be used to construct the liquid–vapour coexistence line
(figure 2) in the following way: at constant temperature and below the critical temperature
Tc, the variations off with respect to 1/η present a vdW loop, which separates the low-
and high-density branches. Each branch can then be determined by performing a double
tangent construction in which the points of tangency correspond to phases of equal pressure
and equal chemical potential. The results obtained in figure 2 and the estimated values of
the critical parameters (Tc = 1940 K,ρc = 0.50 nm−3), shown in table 3, are in reasonable
agreement with the results of various other methods (Caccamo 1996, Hasegawa and Ohno
1996, 1997) which all use the Girifalco potential as a starting point. The discrepancies
between the results of the various methods presented in table 3, and the related question
of the existence of liquid C60 have already been thoroughly discussed elsewhere (Caccamo
1996, Hasegawa and Ohno 1996, 1997, Ashcroft 1993). Our purpose here was simply to
point how the C60 DY potential presented above may be used for the analytic evaluation of
the C60 thermodynamic functions.

Figure 2. C60 liquid–vapour coexistence line obtained from the DY potential.

Table 3. Critical parametersTc (K) and ρc (nm−3) obtained from the C60 DY potential
and comparison with the values obtained from various theories with the Girifalco potential.
HRT (hierarchical reference theory, Tauet al 1995); HMSA (Zerah–Hansen mean spherical
approximation, Chenget al 1993); MHNC (modified-hypernetted-chain, Caccamo 1995); MD
(molecular dynamics, Chenget al 1993); MC (Monte Carlo, Hagenet al 1993); DF (density
functional, Hasegawa and Ohno 1996, 1997).

DY HRT HMSA MHNC MD MC DF

Tc (K) 1940 2138 2050 1920 1900 1798 1960
ρc (nm−3) 0.50 0.50 0.56 0.56 0.42 0.40
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